Relationship between muscle force and muscle area showing glycogen loss during locomotion.

نویسندگان

  • R B Armstrong
  • C R Taylor
چکیده

This experiment was designed to study the relationship between the cross-sectional area of rat skeletal muscle showing glycogen loss and the muscle forces exerted during exercise. Muscular force exerted by the extensors of the elbows and ankle was increased by 24% by loading rats with 24% of their body mass while running them on a treadmill at 30 m.min-1. VO2 increased by 24% and stride frequency was unchanged when the rats ran with loads. Cross-sectional areas of the elbow and ankle extensor muscles showing glycogen loss were compared from rats running with and without the load. We found a nearly direct proportionality between the changes in force and the changes in muscle area showing glycogen loss, i.e. when the force of the extensors was increased by 24%, the cross-sectional area of the elbow extensors showing glycogen loss increased by 28%, and that of the ankle extensor group increased by 24%. The more peripheral muscles in each group accounted for a greater proportion of the increase in cross-sectional area of the group showing glycogen loss (i.e. lateral and long heads of triceps brachii muscle accounted for 91% of the increase in the elbow extensor group, and gastrocnemius muscle accounted for 84% of the increase in the ankle extensor group). Most of the increases in muscle area showing glycogen loss occurred in fast-twitch-glycolytic fibres (84% in the elbow and 88% in the ankle). The data suggest that increasing muscle force requirements by 24% by loading resulted in proportional increases in cross-sectional area of muscles recruited to produce the force, i.e. that spatial recruitment primarily accounted for the elevation in force. The relatively greater increases in cross-sectional area showing glycogen loss of peripheral muscles within a group indicate the importance of studying whole groups of muscles when considering muscular recruitment patterns during exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen loss in rat muscles during locomotion on different inclines.

Running downhill causes structural damage in deep slow-twitch extensor muscles of the limbs. Both mechanical and metabolic hypotheses have been proposed to explain the damage. The purpose of this study was to use measurements of glycogen loss in the muscles and metabolic rates of rats running on the level and up and down 16 degrees inclines at 26 m min-1 to try to distinguish between these hypo...

متن کامل

تاثیر دما بر کاهش قدرت عضلانی ایزومتریک متعاقب تمرینات اکسنتریک در عضله گاستروکنمیوس داخلی ایزوله پرفیوز شده موش صحرائی

Background: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS) and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on t...

متن کامل

A Review of the Role of Carbohydrates in the Sports Nutrition of Soccer Players

Background & Aims: Soccer is a very dynamic and fast team game with a richness of movement, which is in the group of multi-structured sports games; Soccer is a sport characterized by numerous, complex, and dynamic kinematics activities with rotational or non-rotational movements (1). In this sport, a high level of points can be achieved only in planned training conditions (2). Sports scientists...

متن کامل

Force development during sustained locomotion: a determinant of gait, speed and metabolic power.

This paper develops three simple ideas about force development during sustained locomotion which provide some insights into the mechanisms that determine why animals change gait, how fast they can run, and how much metabolic energy they consume. The first idea is that the alternate stretch-shorten pattern of activity of the muscles involved in locomotion allows muscle-tendon units to function a...

متن کامل

How animals move: comparative lessons on animal locomotion.

Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1982